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s DNA the next silicon?



"Disruption occurs when we
create new things, not just
Improvements along a current
path...

...we want to revolutionize the
world, not just evolve our
capabilities.”

—Dr. Whitney Mason
Director, DARPA MTO

Voices of DARPA Podcast, “More than microchips”
Ep 85
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Silicon Birth of Moore’s Law
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DNA is the code of |




But also a nanoscale fabrication material

1 nanometer” 10 nanometers

*1 nanometer = 1 billionth of a meter



And a digital storage medium

exabyte data center 1 exabyte of DNA
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Part I: Vaccines & active
Immunotherapies




150+ million lives saved by vaccines since 1975

Tetanus_ 28

Whooping cough (pertussis) - 13
Tuberculosis - 11
Haemophilus influenzae type B I 3
Streptococcus pneumoniae | 2

Polio I 2

The Lancet: 403: 2307 (2024) & Nature News (2025)



Most successful vaccines are virus-like
particles (VLPs)

Whole Attenuated Virus Recombinant Protein VLP
Chickenpox (mMRkitis B

Measles, mumps, rubella HPV

Hepatitis A

Flu ‘ 1,
Polio s\ "'l \

Rabies \:“\ “q‘&:( ~ g & 7 s
Rotavirus = ~ == < =
Shingles o A - a &
Smallpox 0 SN & v
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Yellow fever l | )

Source: fda.gov



Despite many successes, humerous
pathogens have been impossible to
vaccinate against.



Why is HIV so challenging to vaccinate

against?
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Clinical HIV vaccine (protein VLP: pVLP)

antigen gmot
antibody ’

pVLP
antibody

Jardine et al., Science (2015; 2016)
Leggat et al., Science (2022)



Origami
oru = “to fold”
kami = “paper”

Rothemund, Nature (2006)



] Science 352: 1534 (2016)



Scalable biomanufacturing of dVLPs
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Commercial Translation:

Safe, scalable & efficient 10kb cssDNA
templates for gene therapeutics

kanotherapeutics.com



http://kanotherapeutics.com
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End of Commercial Translation Aside

kanotherapeutics.com



http://kanotherapeutics.com

dVLPs generate antigen-specific
antibodies without DNA antibodies

@ antigen 54 dVLP _ 154 anti-DNA IgG
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dVLP scaffold is “invisible”

DhFAC CFeC,
p Nat Commun 15: 795 (2024) Science 6785: 6785 (2026) =
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dVLPs “immune focus” on the antigen




Commercial Translation:

Vaccinate against Alzheimer’s



Anti-am: loldandbodles clear
amyloid from the brain and

Anti-amyloid antibodies
targets brain
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Part Il: Data storage & global genomics

bio freezer farm




Data size (zettabytes)

Al is data- & energy-starved

Data center energy consumption
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“The End of Moore’s Law”

—~The Economist (2015)

Shrinking chips ‘ | % . Tom ;

a nd Number and length of transistors bought per | | i : Mw %
= # 2012 2014* 2015*

“Kryder’'s Law” | B E o s s
ended in 2010 ’

—Scientific American
(2005) & The Register
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Micron-sized silica particles store DNA

e ATGC = 0110

e room temperature
® NO energy input

e permanent

e EB/cm?data density




Scalable DNA data random access memory
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DNA data storage is not viable today
due to the high cost of DNA synthesis.



Biodiversity

Pathogen surveillance

Global human genomics







~8 billion human genomes worldwide

Only ~50 million sequenced (<1%)



Scalable & point-of-care sample access is
needed

Point-of-care access Automation



! { Nucleic acid extraction

Ty 2 w5 209 Encapsulation
* . and barcoding
Pooling
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Banal et al., ACS App Mat & Int (2021)
Berleant et al., Nat Comm in press (2026)



Commercial Translation:

Scalable, stable, room temperature
biosample collection & storage

cache-dna.com



http://cache-dna.com
http://cache-dna.com
http://cache-dna.com
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DNA & RNA cfDNA Multi-omics €ira 2] s R
Biobanking Liquid Biopsy Drug Discovery B il ot iy

CAP/CLIA Labs Fortune 500 CRO

This information is confidential & proprietary. Any use or distribution of this material without prior consent is strictly prohibited. 4
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Quantum

computer Digital computer
NS L

IBM, UTokyo, & US Army ENIAC
UChicago (2024) (1946)



Transmon Vacuum tube
qubits transistors

npj Quant Inf 3: 2 (2017)
Nat Comm 12: 1779 (2021)



Over 50 years and more than 12
disruptive technological advances




Engineering single-photon emission for
quantum devices.



Moungi G. Bawendi
2023 Nobel Prize
in Chemistry

Quantum dot
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Lithographic patterning of DNA origami on Si

’—.l-
% > Luo et al.
biorxiv (2026)



Lithographic patterning of DNA origami on Si
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s DNA the next silicon?
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Vaccines & active Data storage and Quantum
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Biotechnology is’ In its infancy

ey 1950s: DNA structure
AGE OF STEEL,

ELECTRICITY AND I 1970s: DNA cloning
HEAVY ENGINEERING :

AGEOF " otc 19¢h century { 1980s: DNA synthesis

STEAM AND

RAILWAYS V a 2000s: DNA sequencing

early 19th century

2010s: DNA editing

AGE OF INFORMATION Biotech is bu:ldmg on
AND TELECOMMUNICATIONS

20th century semi-conductors,

Kondratiev (1926) rObOtiCS, AI, etc.
Schumpeter (1939)




Amara’s Law
Roy Charles Amara 1925-2007

We tend to
overestimate the
effect of a technology

in the short run, and
underestimate the
effect in the long run.
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